必威·体育(BETWAY)官方VIP网站-App Store

国家重点研发计划“增材制造与激光制造”重点专项2023年度项目申报指南

发布时间:2023.06.15 来源:南极熊 浏览次数:2622

近日,科技部发布了国家重点研发计划“增材制造与激光制造”等6个重点专项2023年度项目申报指南的通知,“增材制造与激光制造”重点专项围绕“基础理论和前沿技术、核心功能部件、关键技术与装备、典型应用示范”等4 个技术方向,按照基础研究、共性关键技术、应用示范三个层面,拟启动41 项指南任务,拟国拨经费概算4.31 亿元。

欢迎广大从事增材制造研发的机构和企业积极申报2023年的“增材制造与激光制造”重点专项。


以下为“增材制造与光制造”重点专项2023度项目申报指南全文:

为落实“十四五”期间国家科技创新有关部署安排,国家重点研发计划启动实施“增材制造与激光制造”重点专项。根据本重点专项实施方案的部署,现发布 2023 年度项目申报指南。

本重点专项总体目标是:到 2025 年,使我国增材制造与激光制造成为主流制造技术之一,总体达到世界一流,基本实现全球领先,在战略新兴产业、新基建、大国重器中发挥不可替代的重大作用。同时,基本实现增材制造与激光制造全产业链主体自主可控,形成系列长板技术和一批颠覆性技术,并汇集为行业整体优势,为一批领军企业奠基强大的国际技术竞争力,高端装备1产品大批进入国际市场,实现大规模产业化应用,在制造业转型升级中发挥核心作用。

2023 年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕“基础理论和前沿技术、核心功能部件、关键技术与装备、典型应用示范”等 4 个技术方向,按照基础研究、共性关键技术、应用示范三个层面,拟启动 41 项指南任务,拟国拨经费概算 4.31 亿元。其中,围绕单晶高温合金的光束整形激光增材制造方法、超材料三维成形机制及可控微宏观制备新方法等技术方向,部署青年科学家项目,每个项目 200 万元。围绕复杂型面三维激光智能切割、高深径比玻璃通孔激光高效制造等技术方向,部署科技型中小企业项目,每个项目 200 万元。共性关键技术类项目的配套经费与国拨经费比例不低于 1.5:1。应用示范类项目鼓励产学研用紧密结合,充分发挥地方和市场作用,由企业牵头申报,配套经费与国拨经费比例不低于 2.5:1。

项目统一按指南二级标题(如 1.1)的研究方申报。除特殊说明外,每个方向拟支持项目数为 1项,实施周期不超过 3 年申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。基础研究类项目下设课题不超过 4 个,项目参与单位总数不超过 6 家;共性关键技术类和应用示范类项目下设课题数不超过 5个,项目参与单位总数不超过 10 家。项目设 1名项目负责人,项目中每个课题设 1名课题负责人。

青年科学家项目不要求对指南内容全覆盖,不再下设课题,项目参与单位总数不超过3 家。项目设 1名项目负责人,青年科学家项目负责人年龄要求,男性应为 1985年1月1日以后出生,女性应为 1983 年1月1日以后出生。原则上团队其他参与人员年龄要求同上。

科技型中小企业项目要求由科研能力强的科技型中小企业牵头申报。项目下不设课题,项目参加单位 (含牵头单位) 原则上不超过 2 家,原则上不再组织预算评估,在验收时将对技术指标完成和成果应用情况进行同步考核。科技型中小企业标准参照科技部、财政部、国家税务总局印发的《科技型中小企业评价法》(国科发政[2017]115号)。

1 基础理论和前沿技术

1.1 多物理场耦合调控的多级有序结构功能体化学激光协同制造(基础研究类)

研究内容:针对骨修复材料的多级有序化设计与制造难题,研究复合材料体系多物理场调控有序化纤维微基元方法;研究光场能量与纤维微基元组装的耦合调控机制;研究多层级结构及其受力条件下动态演化的高分辨观测和建模方法;揭示化学激光协同跨尺度构建技术对力学和生物性能的影响机制;完成仿生骨多级结构功能体制造,并进行验证。

考核指标:建立多物理场耦合调控的多级有序结构功能体调控构建理论模型,实现仿生骨多级结构有序化组装,结构尺度跨越 0.1μm~100mm,纤维微基元径向有序度及纤维微基元中聚合物的分子取向度均≥50%;建立动态演化的大尺度多层级高分辨三维结构功能分析方法和仿生结构力学设计模型,构件尺寸≥400μm,空间分辨率≤30nm;跨尺度结构功能效应样件力学强度、弹性模量与松质骨匹配,仿生骨与自体骨组织形成矿化骨整合界面的周期≤3 周,符合医疗器械生物学评价标准 GB/T 16886 及指导原则。

关键词:多物理场耦合调控,多层级有序结构,微基元,激光有序化调控,多层级观测与建模

1.2氧调控高强韧金属激光增材制造(基础研究类)

研究内容:针对高强韧铝合金、镍基高温合金、难熔钨合金等难加工金属,探索通过调控氧元素含量及其存在形态提高材料强韧性的理论与方法,揭示激光增材制造过程中氧元素含量及其存在形态对合金成形工艺特性与组织性能的影响机制;建立原子尺度氧序构一显微结构一介观结构一宏观力学性能之间的构效关系;研究氧对激光增材制造熔池热一力行为、冶金行为和包括氧化物强化相在内的多层级显微组织形成的作用规律,多尺度应力应变演变的影响机制,研究熔池内氧元素的原位超快在线检测原理及方法;形成基于氧调控的增材制造金属构件的强韧化机制及形性协同控制方法。

考核指标:建立激光增材制造中氧元素含量及其存在形态对成形材料性能影响的关系模型,形成不少于 3 类激光增材制造专用氧调控高强韧金属材料体系;建立氧及其反应产物原位高效在线检测方法和评估算法,熔池中氧元素原位检测精度≤5ppm;建立调控方法,氧含量调控精度优于±25ppm;相对常规控氧环境下激光增材制造构件在延伸率不明显降低的情况下强度、弹性模量等指标提升≥30%,或在强度不明显降低的情况下断裂韧性等指标提升≥30%;完成不少于 4 类氧调控高强韧金属复杂精密构件的设计与制造,并在航空航天、核等不少于 3 个领域中得到应用。

关键词:氧调控增材制造,多层级显微组织,难加工金属材料

1.3 复杂构件激光固态相变组织精密调控(基础研究类)

研究内容:针对大型钢构件原位表面强韧化需求,研究多热源耦合条件下的大型构件激光固态相变温度场时空演化行为;研究激光固态相变复相组织转变、深度分布等特征及其调控机理与方法;研究复相组织的强韧化机制及疲劳破坏机理,建立其疲劳寿命预测模型;开展应用验证研究。

考核指标:建立激光固态相变三维瞬态温度场、组织场及应力应变场耦合模型;应用于长度≥6m 或直径≥3m 的大型钢构件,获得马氏体、珠光体、贝氏体及其复相组织,晶粒度 3~10 级可调,最大可调深度≥6mm;表面硬度一致性偏差≤2HRC,处理层深度一致性≥95%,表面变形量≤0.1mm/1000mm,表面接触疲劳寿命较处理前提升≥30%;在能源动力、轨道交通等领域实现应用验证。

关键词:激光固态相变,组织精密调控,强韧化,接触疲劳

1.4 高分子粉床吸能诱导烧结高速 3D 打印(基础研究类)

研究内容:围绕交通运输、康复医疗、可穿戴领域装备部件轻质高强和多功能化的重大需求,针对超高分子量聚乙烯等无粘流态刚性高分子和硅橡胶等柔性弹性体材料,开展粉末床吸能诱导选择性烧结高速 3D 打印新方法研究。研究适用于3D 打印的吸能墨水材料和高分子粉体材料;研究吸能诱导选择性烧结成形机制和高分子材料 3D 打印成形新原理,以及打印精度控制技术;建立一体化高分子材料粉末床吸能诱导烧结 3D 打印制件综合性能评估体系;研制相关装备。

考核指标:建立外场能量吸收与高分子粉末诱导烧结的成形理论与计算仿真模型;高分子粉末床吸能诱导选择性烧结高速 3D打印装备:制造效率≥3000cm3/h,最小打印层厚≤50μm,最高烧结温度≥400℃,成形精度优于 0.2mm,结构特征尺寸最小可达 1mm;超高分子量聚乙烯、硅橡胶等高性能高分子粉体材料种类≥5 种,相应专用墨水种类≥2 种;成形件力学性能不低于传统制件的 60%;在航空航天、生物医疗和消费品等领域实现应用验证。

关键词:增材制造,粉末床,聚合物,外场能量,选择性烧结

1.5 厘米级结构超滑功表面的激光制造(基础研究类)

研究内容:针对航空航天器件低摩擦表面的制造需求,研究激光制备单晶石墨过程中时空光场对石墨晶态及其表/界面原子结构的调控机理;研究厘米级无褶皱结构超滑单晶石墨制备机制建立快速溶碳和非平衡析碳的激光能场驱动理论;发展单晶石墨结构超滑表面的原位制备、石墨图案化结构超滑表面的制造方法开发厘米级结构超滑器件制造工艺技术。

考核指标:构筑不少于 4 种厘米级图案化结构超滑功能表面,具备可控形状(方台、圆台等)、高度(1~200μm)、宽度(5~500μm)的单元结构特征,可控周期(5~500μm)、密度(单晶石墨表面占比 10%~70% ) 的 阵 列 分 布 特 征 ;结 构 超 滑 表 面 面 积 ≥20mm×20mm,单晶石墨微区平整度≤30nm 且无褶皱,摩擦应力≤0.001MPa,承载≥50N(测试速度≥0.1m/s);在航空发动机轴承实现应用验证,润滑系统总重量降低 50%以上。

关键词:激光原位生长,激光微图案化,单晶石墨,结构超滑,轴承

1.6太空极端环境金属增材制造(基础研究类)


研究内容:针对太空极端环境下金属构件快速制造的需求,开展适用于太空极端环境的金属增材制造新机理、工艺和装备研究。研究真空和微重力环境下低功耗的金属增材制造熔化和冶金行为,阐明增材制造过程中,真空、微重力条件对金属熔体润湿铺展、凝固行为对成形件尺寸精度与表面粗糙度的影响机制;研究太空极端环境下金属增材制造的形性调控技术,探索合金、铝合金、不锈钢等多种材料的成形工艺。

考核指标:实现微重力、真空下的金属增材制造过程仿真分析,建立适用于太空极端环境的金属增材制造润湿铺展和凝固行为模型;研制适用于太空微重力、真空环境的金属增材制造集成化装备 1 套,可以实现钛合金、铝合金、不锈钢等典型金属构件的增材制造。增材成形设备总功率小于 1kW,环境真空度可达到10-3Pa 以上,整体装备可承受-70℃至+100℃温度变化,通过 10g加速度测试,零件尺寸不小于 400mm×400mm×20mm,成形精度≤0.5mm,表面粗糙度 Ra≤15μm,综合力学性能不低于锻件性能的 80%,建立相应的太空金属增材制造工艺规范。

关键词:太空增材制造,极端环境,微重力,低功耗增材制造

1.7 热功能表界面微纳结构与料特性一体化超快激光制造(基础研究类)

研究内容:针对航空航天、能源等重大装备对高性能传导/辐射/转换等热功能的迫切需求,研究超快激光作用下材料表界面能量吸收与传递的时空演化规律,以及热功能表界面形性特征对热功能的耦合影响规律及调控机制;研究超快激光制造工艺对热功能表界面形性特征的影响与作用规律:研发高效、稳定热功能表界面微纳结构一材料特性一体化协同超快激光大面积制备方法及关键装置,进行应用验证。

考核指标:形成表界面微纳结构与材料特性对热功能耦合作用模型;超高速并行光参量动态调控装置 1 套:单脉冲加工效率≥150,000 单元/秒,光参量动态调节响应时间≤0.5μs;一体化加工面积≥300cm2。不少于 3 类新型热功能器件:键合温度≤150℃,导热率≥200W/(m•K);热辐射图案化单元特征尺寸覆盖
300nm~100μm,热伪装兼容波段≥3 且阶数动态连续可调;光热转换膜标准光照水蒸发速率≥4kg/(m2•h)。上述三类器件使用 100小时后性能衰退≤2%,在航空航天、能源等装备中实现应用验证。

关键词:超快激光,热功能表界面,微纳结构,材料特性,一体化制造

1.8多功能跨尺度共形结构协同增制造技术(基础研究类)

研究内容:针对航空航天等领域对高性能、高集成度功能构件的需求,研究增材制造结构整体承载与结构功能区的保形协调机制,以及基底一功能线路一体化增材制造的共形界面形性演化规律;研究表面变曲率复杂结构内腔点阵共形填充及胞元完整性保持算法,多物理场高精高效分析方法,结构一功能匹配的跨尺度结构整体拓扑优化设计方法;研究共形喷墨打印导电线路形貌的精确控制技术,以及多层异质界面强化机理及高可靠性曲面多层电路互联技术。

继续阅读/申报指南下载请点击:

https://www.nanjixiong.com/thread-162891-1-1.html